

Nouveautés en Oncologie thoracique 29 mars 2014

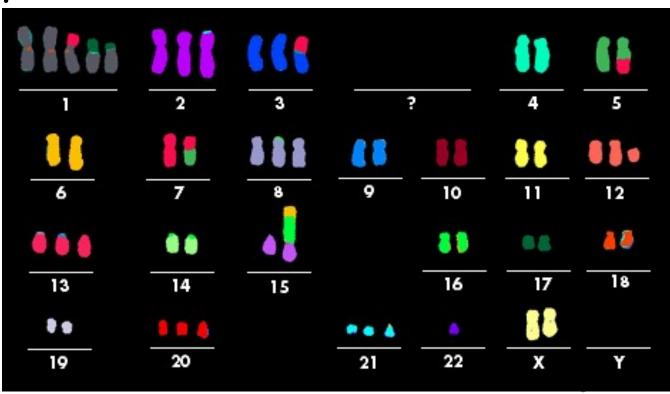
Génome et risque de cancer

Nathalie PRIM

Les propriétés de la cellule cancéreuse

Indépendance vis à vis des signaux de prolifération Échappement à Insensibilité aux signaux anti-prolifératifs l'apoptose Angiogenèse **Envahissante** et métastase Potentiel réplicatif illimité: -contourne les limitations de la prolifération -échappe à la sénescence réplicative -évite la différentiation

Résultat de modifications de certains gènes clés


Hanahan D, et al. The hallmarks of cancer. Cell 2000

Bases moléculaires du cancer

• Le cancer est une maladie génétique :

• Remaniements chromosomiques :

- Polysomie
- Translocation
- Inversion
- Perte ou duplication

Bases moléculaires du cancer

- Le cancer est une maladie génétique :
 - Anomalies géniques :
 - Mutation : variation de la séquence d'un gène
 - Certaines auront des conséquences délétères sur la fonction de la protéine codée
 - Mutation faux sens
 - Mutation non sens
 - Décalage du cadre de lecture
 - Insertion / délétion
 - D'autres n'auront pas de conséquence fonctionnelle pour la protéine codée = polymorphisme

Bases moléculaires du cancer

- Mutation somatique ou « acquise » :
 - n'était pas présente initialement dans le génome de la cellule
 - peut être à l'origine d'un clone cellulaire porteur de cette mutation
 - n'est pas transmissible à la descendance

- Mutation germinale ou « constitutionnelle » :
 - est présente ou survient avant la fécondation dans un gamète (soit nouvellement apparue, soit transmise de génération en génération)
 - présente dans toutes les cellules somatiques de l'individu et dans ses cellules germinales
 - est transmissible à la descendance

Prédispositions génétiques au cancer

- 5 10 % des cancers dus à une mutation constitutionnelle
- Formes héréditaires transmissibles à la descendance

- Sont évocateurs :
 - Excès de cas de cancer au sein d'une même branche parentale
 - Formes précoces
 - Formes bilatérales ou multifocales

Prédispositions génétiques au cancer

• Les plus connues :

- Syndrome seins-ovaires :
 - Prédisposition génétique à transmission autosomique dominante
 - Gènes intervenant dans le système de réparation de l'ADN : BRCA1 et BRCA2

Syndrome de Lynch :

- Forme héréditaire non polyposique de cancers colo-rectaux
- Prédisposition génétique à transmission autosomique dominante
- Gènes impliqués dans le système d'identification et de réparation des mésappariements de l'ADN (système MMR): MLH1, MSH2, MSH6 et PMS2

Facteurs de risque de cancer bronchique

- Facteurs de risques exogènes :
 - Tabagisme:
 - en cause dans 85 % des cancers bronchiques
 - Actif ou passif
 - Amiante
 - Expositions professionnelles: amiante, hydrocarbures aromatiques polycycliques, arsenic, silice...
 - Environnement : radon, pollution atmosphérique...
- Facteurs de risque endogènes

• Étude de cohorte :

- Analyse de 24 études de International Lung Cancer Consortium
- 24 380 cas et 23 399 contrôles
- Augmentation du risque de cancer bronchique en cas d'histoire familiale de cancer bronchique (parents au 1^{er} degré)
 - OR = 1.51 après ajustement pour le tabagisme et autres facteurs confondants (IC95 : 1.39 1.63)
- Non fumeurs : OR = 1.25 (IC95 : 1.03 1.52)

- Études d'agrégation familiale
- Risque relatif λ : rapport entre le risque relatif de développer la maladie pour un apparenté au cas index par rapport au risque de la population générale
- Analyse des registres épidémiologiques
 - Registre suédois : enregistrement de > 1 200 000 cas de cancers entre 1958 et 1997
 - Registre de l'Utah :
 enregistrement de 125 000 cas de cancers
 entre 1952 et 1992

- Registre suédois :
 - 89 000 cas de cancers bronchiques
 - Risque de cancer bronchique chez les parents 1^{er} degré : $\lambda = 1.9$
 - Risque de cancer du sein : $\lambda = 1.5$
 - Risque de cancer du colon : $\lambda = 1.9$
- Registre Utah:
 - Risque de cancer bronchique chez les parents 1^{er} degré : $\lambda = 2.55$
- En faveur d'une contribution génétique
 Attention au clustering familial de facteurs de risque non génétiques (tabagisme)

- Étude de l'héritabilité : études de concordance entre jumeaux
 - Héritabilité du cancer bronchique = 8%
 - Concordance supérieure chez jumeaux monozygotes que dizygotes
 - Héritabilité du tabagisme = 0.5%

GSTM1 glutathione S transferase M1

- Rôle dans la détoxification de carcinogènes environnementaux
- Également associé au cancer de la vessie
- Méta-analyse de 43 études
 - 7 000 cas, 10 000 contrôles
 - Polymorphisme de ce gène : risque de cancer bronchique augmenté de 1.17 (IC95 : 1.07 – 1.27)

 Polymorphisme des enzymes de détoxification des Hydrocarbures aromatiques Polycycliques > formes epoxy carcinogènes

• 3 phénotypes : inductibilité haute, moyenne, basse

• Cancer: haute ++

Variant 1157T du gène CHEK2

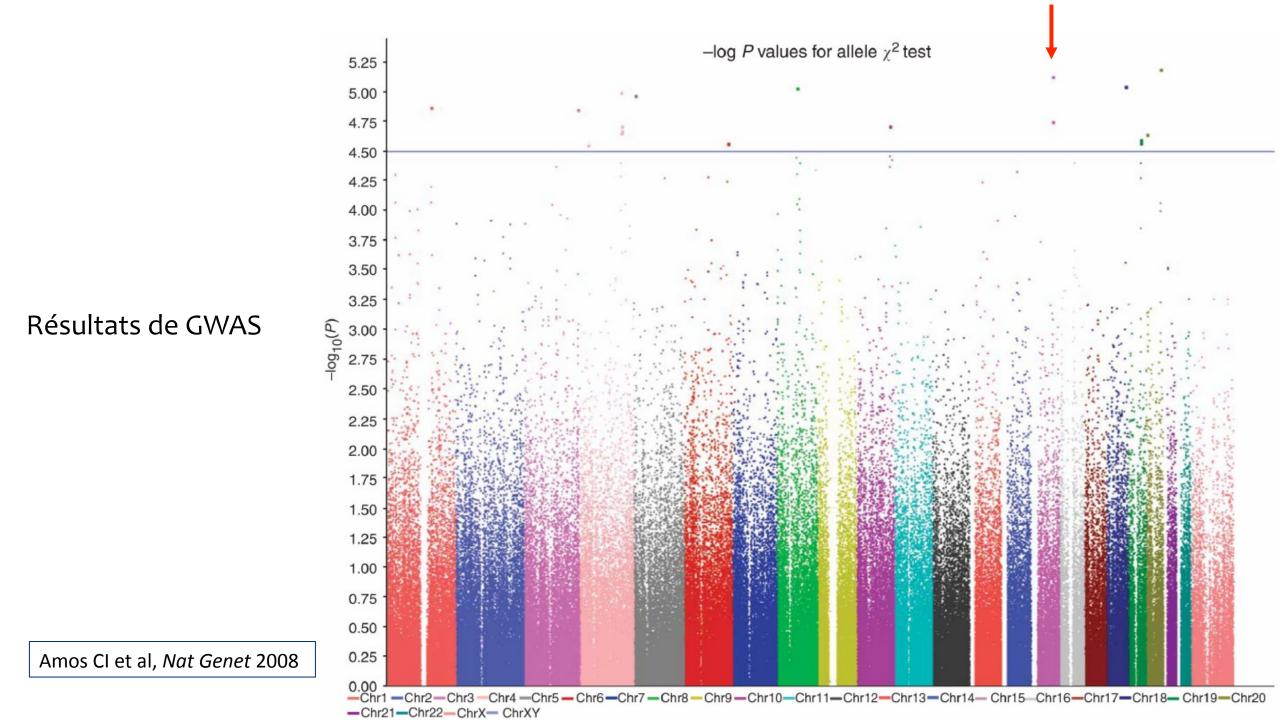
 Gène impliqué dans le contrôle du cycle cellulaire (activation de check points en réponse à dommages de ADN)

- Variant I157T:
 - augmente le risque de cancers du colon, sein, prostate
 - Fréquent en Europe : 5 7% de la population
 - Facteur protecteur du cancer bronchique ??
 - Incidence de cancer bronchique inférieure : OR = 0.3 0.44

Comment objectiver une susceptibilité génétique ?

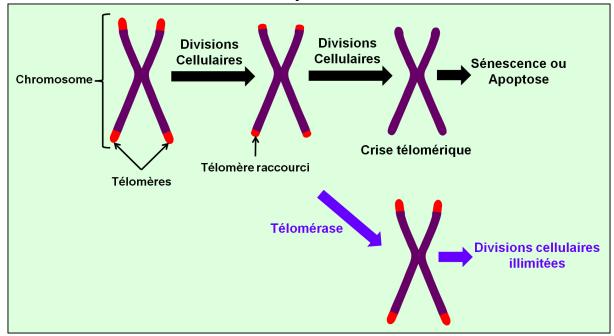
• Études d'association :

études cas-contrôles basées sur la comparaison de la fréquence d'allèles entre un groupe affecté et un groupe indemne


• Études d'association pan-génomiques

genome whole association study GWAS

Etudes d'association pan-génomiques

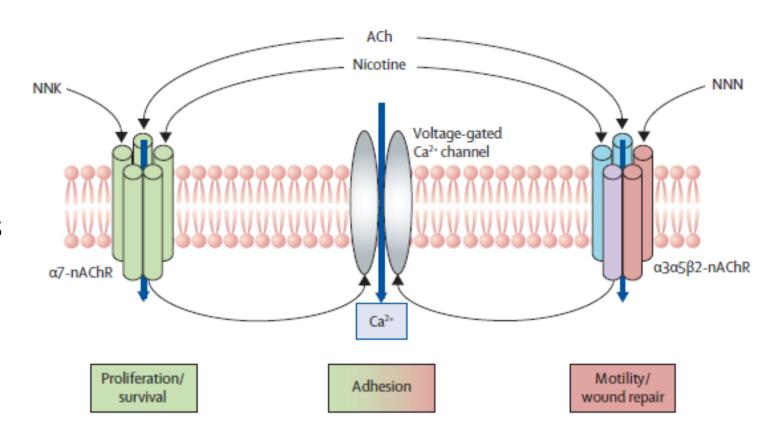

- Génotypage de variants génétiques (SNP: single-nucleotide polymorphisms) issus de tissus sains de patients malades (cas) et contrôles
- Comparaison entre cas et contrôles
- Identification de plusieurs loci de susceptibilité au cancer bronchique:
 - Locus 5p15 (gène TERT)
 - TERT: human telomerase reverse transcriptase gene
 - Locus 15q25 (gènes CHRNA3, CHRNA5, CHRNB4)
 - codent pour des récepteurs nicotiniques de l'acétylcholine
 - Locus 6p

Hung RJ et al, *Nature* 2008 Amos CI et al, *Nat Genet* 2008 Thorgeirsson TE et al, *Nature* 2008

Locus 5p15

- Gène TERT: human telomerase reverse transcriptase gene
 - Télomérase est une enzyme responsable de la régénération des télomères
 - > 90% des tumeurs expriment la télomérase
 - Régénération des télomères permet la prolifération des cellules cancéreuses
- 2 variants associés à un risque augmenté de cancer bronchique
 - rs 402710 (OR = 1.14)
 - rs2736100 (OR = 1.15)

Locus 15q25


- · Gènes de récepteurs nicotiniques de l'acétylcholine
 - Impliqués dans la vulnérabilité à la dépendance à la nicotine
 - Associés au cancer bronchique mais aussi à BPCO et cancers ORL
- Majoration du risque de cancer bronchique par majoration de l'addiction au tabac ??
 - Chez les non fumeurs :
 - Plusieurs variants de ce locus ont été associés au cancer bronchique

Saccone et al, *Hum Mol Genet* 2007 Hung RJ et al, *Nature* 2008 Wu C et al, *Cancer Res* 2009 Thorgeirsson TE et al, *Nature* 2008 Amos CI et al, *Nat Genet* 2008 Shiraishi K et al, *Carcinogenesis* 2009

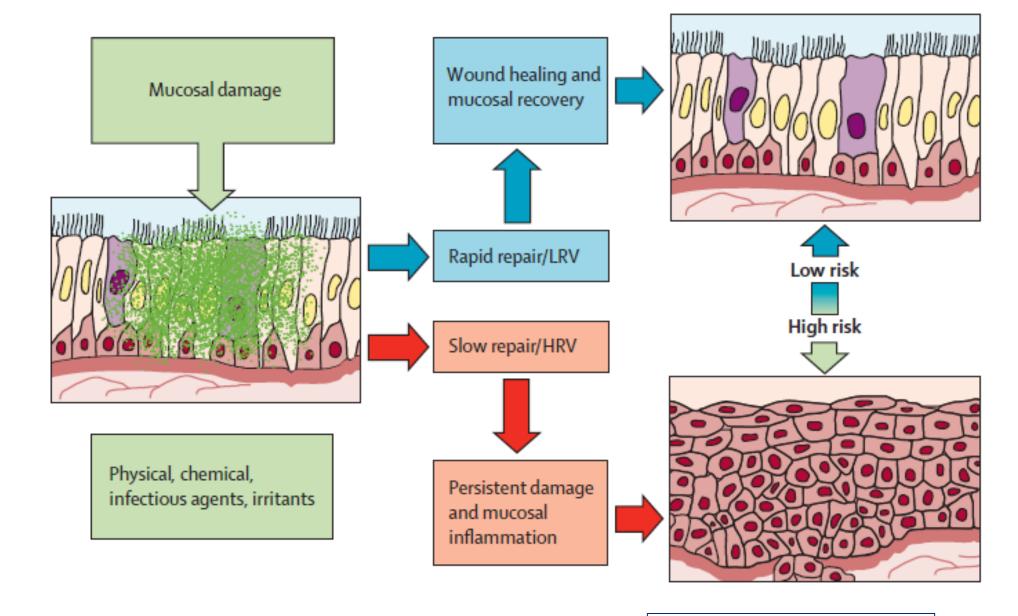
Locus 15q25

- Récepteurs nicotiniques de l'acétylcholine:
 - Récepteurs transmembranaires ubiquitaires
 - Exprimés dans l'épithélium bronchique (2 isoformes : α7 et α3)
 - Rôle dans la réparation des lésions de l'épithélium :

α3 surexprimé dans les cellules migrantes sur les berges d'un épithélium lésé

Paliwal A et al, *Cancer Res* 2000 Brennan P et al, *Lancet* 2011

Locus 15q25

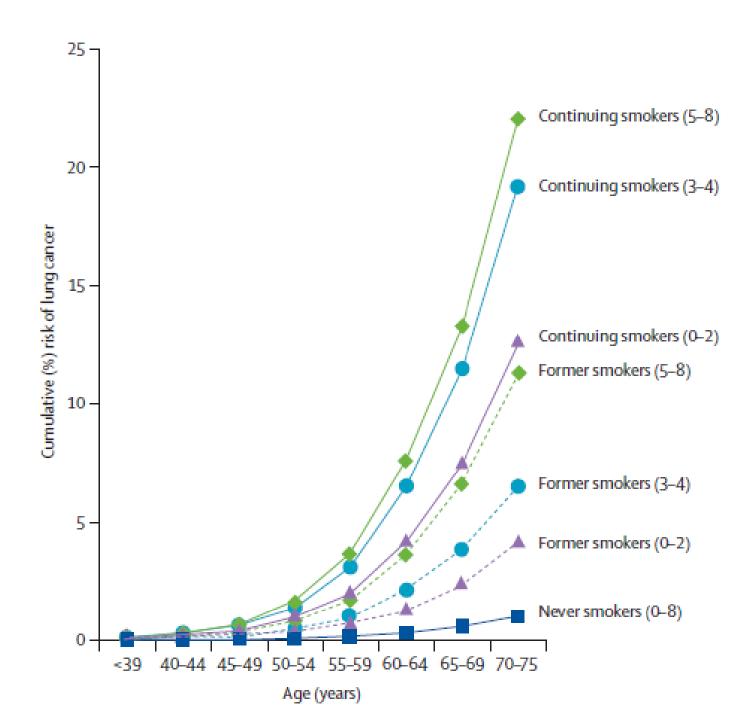

- Récepteurs nicotiniques de l'acétycholine
- Gène CHRNA3:
 - hyperméthylation du promoteur retrouvée de façon très fréquente dans les cancers bronchiques
 - donc sous-expression du récepteur
 - en restaurant son expression in vitro : /apoptose
- Certains carcinogènes du tabac (nitrosamines) se fixent sur ces récepteurs avec une affinité supérieure à celle de la nicotine
 - Cellules épithéliales bronchiques ciblées par ces carcinogènes via ces récepteurs ?

Paliwal A et al, *Cancer Res* 2000 Brennan P et al, *Lancet* 2011

Locus 15q25 : en résumé :

- Comment le polymorphisme des gènes CHRNA prédispose au cancer bronchique ?
- 1. modulation des capacités de migration et de réparation des lésions tissulaires
- > persistance de dommages de la muqueuse la rendant plus sensible aux carcinogènes ?
- d'autant plus que certains carcinogènes s'y fixent avec une haute affinité
 - > formation de lésions pré-cancéreuses ?
- 2. modulation du potentiel invasif et de métastase

Locus 15q25


Brennan P et al, Lancet 2011

Données chez les fumeurs

- GWAS, cancer bronchique et tabagisme:
 - Risque attribuable aux SNP identifiés = 14 – 18%
 - Risque attribuable au tabagisme
 80%
- 3 loci de susceptibilité et 8 variants potentiellement transmissibles :

risque principalement lié au tabagisme

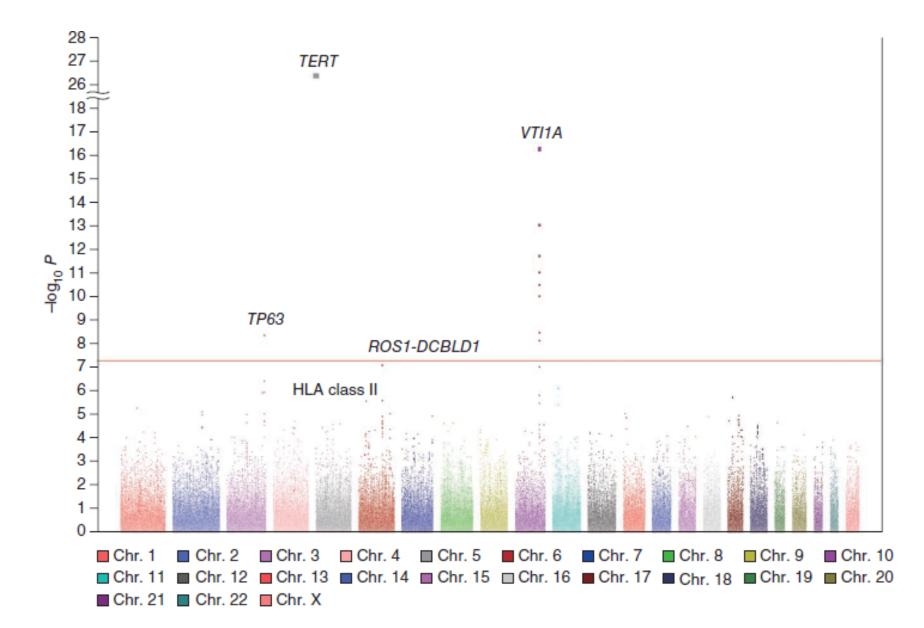
Hung RJ et al, *Nature* 2008 Liu P et al, *J Natl Cancer Inst* 2008 Brennan P et al, *Lancet* 2011

Données chez les non fumeurs

• 25% des cancers bronchiques

• Europe: 10 -15%

• Asie: 50%


Principal risk factors (excluding occupational exposure) of lung cancer and corresponding estimated risks as reported in the studies analysed in the present review.

Risk factor	Estimated risk(95% confidence interval)	Population	Ref.	
Family history	OR = 1.40 (1.17–1.68)	Never smokers (meta-analysis)	147	
Use of menopausal hormone replacement therapy	OR = 1.76 (1.072 - 2.898)	Women, never-smokers, adenocarcinoma, (meta-analysis)	57	
Environmental tobacco smoke	OR = 1.26 (1.07-1.47)	Never smokers (meta-analysis)	32	
Domestic radon exposure	10.6% (0.3–28.0) per increase of 100 Bq/m ³	Never smokers (meta-analysis)	61	
Air pollution – increase of 10 μg/m ³ in PM _{2.5}	HR = 1.24 (1.12-1.37)	General population	66	
Air pollution – increase of 10 ppb in SO ₂	HR = 1.26 (1.07 - 1.48)	General population	66	
Air pollution – increase of 10 ppb in NO ₂	HR = 1.17 (1.10-1.26)	General population	66	
Cooking oil fumes	OR = 2.12 (1.81 - 2.47)	Women, never smokers, Chinese (meta- analysis)	67	
Smoke from domestic combustion for heating and cooking	OR = 1.22 (1.04-1.44)	General population, Europe	70	
Patient history of tuberculosis	RR = 1.90 (1.45-2.50)	Never smokers (meta-analysis)	81	
Patient history of COPD/emphysema/chronic bronchitis	RR = 1.22 (0.97-1.53)	Never smokers (meta-analysis)	81	
Patient history of parenchymal infection	RR = 1.36 (1.10-1.69)	Never smokers (meta-analysis)	81	
Low socioeconomic status	RR = 1.65 (1.19-2.28)	General population (meta-analysis)	78	
High intake of fruit	OR = 0.60 (0.46 - 0.7)	General population but higher in current smokers	85	

OR = Odds ratio, HR = Hazard ratio, RR = Relative Risk, COPD = Chronic Obstructive Pulmonary Disease.

Données chez les non fumeurs

 GWAS chez des femmes non fumeuses asiatiques

Lan Q et al, Nature Genet 2012

		4 4 1				C 1			
nncipal	genomic p	olymorphisms	associated	with a	nsk	of lung	cancer in	never smoke	rs.
	Series P	orly more principles	troop entree	*******		·	currer in	me i er binere	•

Pathway	Gene	Protein	Studied polymorphism	OR (95% confidence interval)	Comments	Ref.
Carcinogenic metabolism (polycyclic	CYP1A1	Enzyme involved in early (phase 1) metabolism steps	T3801C (MspI) A2455G (Ile462Val)	NS 2.21 [1.12–4.37]	Role in hormone- dependent cancers?	95 95
aromatic hydrocarbons, nitroaromatics, arylamines)	GSTM1	Enzyme involved in late (phase 2) metabolism steps (conjugation)	Null genotype	NS	If associated with the Ile462Val polymorphism of CYP1A1, OR= 4.67 [2.00-10.9]. Role in cancers before the age of 50?	95 148
	NQO1	Phase 1 and 2 enzyme	Pro187Ser	NS		149
DNA repair	XRCC1	DNA base repair enzyme	Arg399Gln	2.4 [1.2–5.0]	Protective factor in 'heavy' smokers (relation dose / odds ratio) Expression differential increased in the presence of <i>ERCC2</i> Asp312Asn and Lys751Gln polymorphisms	98
	ERCC2	Nucleotide repair enzyme	Lys751Gln and	NS		101
	(XPD)		Asp312Asn			103
	MLH1	Mismatch repair enzyme	GG Genotype	1.64 [1.10–2.44]	Role in cancers caused by exposure to environmental tobacco smoke?	150
Inflammation pathways	IL10	Inflammation mediator	TT genotype of rs1800871	2.5 [1.3–5.1]		107
	TNF		CC genotype of rs1799964	0.36 [0.17–0.77]		107
	IL1-β-31T/C		TT genotype	2.24 [1.15-4.38]	If associated with	108
	IL1-RN		Allele *2 VNTR	5.09 [1.39– 18.67]	atopy, asthma, chronic cough	108
	IL6		Allele 634 G	1.44 [1.07-1.94]		108

Couraud S et al, Eur J Cancer 2012

Mutations germinales de l'EGFR

Revue de la littérature :

- Décrites dans des cas familiaux de cancers bronchiques
- 4 types décrits :
 - exon 20 : T790M et R776X
 - exon 21: V843I et P848L
- Rares:
 - T790M (germinale): 0.54% des cancers bronchiques des non fumeurs
- Souvent associées à une mutation somatique de l'EGFR (L858R)

Mutations germinales de l'EGFR

- Rôle de prédisposition au cancer bronchique ?
 - Effet oncogénique ? Démontré pour les mutations T790M et R776G
 - Responsable d'une instabilité génétique ?

- Valeur prédictive de réponse aux thérapies ciblées ??
 - Étude inhibition cellulaire sur lignées
 - Données cliniques

Résistance aux TKI-EGFR pour les mutations T790M et V834I

Girard N et al, *Clin Cancer Res* 2010 Centeno I et al, *BMC Cancer* 2011 Ohtsuka K et al, *J Clin Oncol* 2011

Mutations germinales de l'EGFR

• A Strasbourg : détection de mutations germinales de l'EGFR chez 2 patients suivis pour un cancer bronchique non à petites cellules

• Cas n°1:

- Un homme caucasien de 63 ans, non fumeur, adénocarcinome bronchique avec atteinte pleurale
- Analyses moléculaires :
 - sur tissu tumoral: double mutation EGFR: L858R et V834I
 - sur tissu sain : détection de la mutation V834I
- Stabilité sous TKI-EGFR (10 mois de traitement)

• Cas n°2:

- Une femme de 31 ans, caucasienne, tabagisme actif, adénocarcinome bronchique avec métastase cérébrale
- Analyses moléculaires :
 - sur tissu tumoral: mutation EGFR P848L
 - sur tissu sain: mutation EGFR P848L
- Progression sous TKI-EGFR
- Pas d'histoire familiale de cancer bronchique

Conclusion

- Principaux facteurs de risque de cancer bronchique environnementaux
- Il existe des déterminants génétiques au cancer bronchique
- Intérêts:
 - Compréhension des mécanismes d'oncogénèse
 - Mieux cibler les populations à risque pour dépistage ou diagnostic précoce
 - Développements de thérapies ciblées
- Quel conseil génétique peut on donner ??
- Consultation dédiée d'oncogénétique