Rôle des endotoxines de l'environnement intérieur dans les pathologies respiratoires Olivier Michel CHU Brugmann Université Libre de Bruxelles #### **ENDOTOXIN ACTIVITY OF A HOUSE DUST EXTRACT** #### Abstract A commercial dust extract has been demonstrated to contain endotoxin-like activity. The clinical significance of this finding is unclear, but any substance as biologically active as endotoxin must be seriously considered to have some action when it is injected into a living organism. Any study of the action of dust extract in clinical allergy must consider this potent substance. PETERSON RD, WICKLUNDS PE, GOOD RA. J Allergy Clin Immunol. 1964 Mar-Apr;35:134-42. ### Gram negative bacteria The LPS receptor R Medzhitov, C Janeway. N Engl J Med 2000; 343: 338-44 ### Endotoxin in house dust Table 1. Endotoxin concentrations in house dust | Reference | n | Room | Location | Settled/
airborne dust | Endotoxin
concentration
(ng/g HD or
ng/m³ air) | Significant
risk factor | |--|---------------|-------------------------------------|----------------------------|---|--|--------------------------------------| | Rylander & Malmberg (1992) ⁸⁹ | 8
10
36 | Day-care center
School
Office | Air
Air
Air | Airborne
(inhalable) | 0.43 ng/m ³
0.26 ng/m ³
0.06 ng/m ³ | ND | | Michel et al. (1992) ⁴⁹ | 28 | Bedroom | Floor + mattress | Settled | 2274 ng/g | Not related with the presence of cat | | Preller et al. (1995) ²⁷ | 194 | Living (pig farmers) | Air | Airborne
(inhalable) | 111 ng/m³ | Farming | | Michel et al. (1996) ²⁸ | 69 | Bedroom | Floor
Mattress | Settled
Settled | 1860 ng/g
1780 ng/g | Not related with
Der p1 | | Rizzo et al. (1997) ²⁹ | 20 | Bedroom | Floor + mattress | Settled | 1080 ng/g | ND | | Douwes et al. (1998) ³⁰ | 25 | Living
Bedroom
Bedroom | Floor
Floor
Mattress | Settled
Settled
Settled | 1730 ng/g
730 ng/g
270 ng/g | Built after 1970 | | Wouters et al. (2000) ³¹ | 99 | Living
Kitchen | Floor
Floor | Settled
Settled | 601 ng/g
1344 ng/g | Storage of separated organic dust | | Gereda et al. (2000) ³² | 61 | Living + bedroom | Floor + mattress | Settled | 18,240 ng/g | ND | | von Mutius <i>et al</i> . (2000) ³³ | 84 | Kitchen farming
Kitchen controls | Floor
Floor | Settled
Settled
Air inhalable
Air respirable | 14,300 ng/g
3900 ng/g
15 ng/m ³
0.7 ng/m ³ | Farming | | Park <i>et al.</i> $(2001)^{34}$ | 499 | Living
Bedroom
Bedroom | Floor
Floor
Mattress | Settled
Settled
Settled | 7900 ng/g
6300 ng/g
5000 ng/g | Dog, cockroach | | Gereda et al. (2001) ³⁵ | 86 | Living/bedroom | Floor + mattress | Settled | 17,820 ng/g | Presence of animals | | Heinrich et al. (2001)36 | 454 | Living | Floor | Settled | 1960 ng/g | Dog, cat, cockroach | | Franci et al. (2001)37 | 100 | Bedroom | Floor | Settled | 1930 ng/g | ND | | Bischof et al. (2002) ³⁸ | 405 | Living | Floor | Settled | 2 274 ng/g | Poor hygienic conditions | Data expressed in EU have been transformed to ng (1 ng = 10 EU). ### Endotoxine dans l'habitat US PS Thorne et al. Environ Health Perspect 2009 ### Endotoxin and cigarette smoke ### Lung function response to LPS #### **Chronic bronchitis** #### **Asthma** G Cavagna et al Br J Ind Med 1969; 26:314-21 Aerosol Michel et al JAP 1989; 66: 1059-64 #### LPS: blood inflammation O Michel et JACI 2001; 107: 797-804 ### The clara cells are activated ### Bronchial inflammation to LPS Lung segmental challenge (5 mcg LPS) and BAL NP O'Grady et al AJRCCM:2001;163:1591-8 ### Bronchial inflammation to LPS ### Effet d'un anti-TNF (humira) et de la prednisolone sur la neutrophilie bronchique induite par l'inhalation de LPS # Proteomic of the induced-sputum supernatant (« sputome ») ### Proteins separation by two-dimensional gel electrophoresis Ruddy Wattiez, PhD Department of Proteomics and Protein Biochemistry University of Mons-Hainaut ### Inflammatory proteins #### MALDI-TOF mass spectrometry #### Calgranulin A #### Calgranulin B ### Fonctions of the calgranulines (S100A8) ### Proteomic of the BAL from smokers **Figure 4.** Differential display of proteins from BALF of smokers with COPD (CS) compared to AS on a WCX2 ProteinChip. S100A8 protein (10835 Da), which is up-regulated in the course of COPD, is indicated by a box. D Merkel et al Proteomics 2005; 5, 2972 # Contrôle de la réponse adaptative par le système inné R Medzhitov, C Janeway. N Engl J Med 2000; 343: 338-44 # Capteurs microbiens innés et allergies ## Endotoxin and the positive skin tests to allergens in infants JE Gerada et al Lancet 2000; 355: 1680 ### Home endotoxin exposure in children 6-13 years n = 813 Clinical questionnaires Endotoxin measurement from the bedding | Неацтн Оитсоме | Total Samp | PLE (N=812) | CHILDREN FROM NONFARMING HOUSEHOLDS (N=493) | | |--|--------------------|-------------------|---|----------------------| | | ENDOTOXIN LEVEL | ENDOTOXIN LOAD | ENDOTOXIN LEVEL | ENDOTOXIN LOAD | | | adjusted odds rati | | tio (95% CI)* | | | Hay fever | 0.58 (0.39-0.85)† | 0.53 (0.35-0.81)† | 0.79 (0.52-1.19) | 0.56 (0.33-0.95)† | | Sneezing and itchy eyes during previous yr | 0.61 (0.43-0.86)† | 0.50 (0.34-0.72)† | $0.70\ (0.47-1.05)$ | 0.46 (0.28-0.76)† | | Atopic sensitization‡ | 0.78 (0.60-1.01) | 0.76 (0.58-0.98)† | $0.80\ (0.59-1.08)$ | 0.73 (0.51-1.04) | | Atopic asthma | 0.73 (0.44-1.19) | 0.48 (0.28-0.81)† | 0.68 (0.39-1.19) | $0.52 \ (0.25-1.07)$ | | Nonatopic asthma | 1.25 (0.62-2.51) | 1.13 (0.57-2.26) | 1.29 (0.62-2.68) | 1.00 (0.46-2.21) | | Atopic wheeze | 0.89(0.57-1.39) | 0.62 (0.39-0.99)† | 0.79 (0.46-1.33) | 0.64 (0.33-1.25) | | Nonatopic wheeze | 0.97 (0.58-1.61) | 1.14 (0.68-1.90) | 1.36 (0.86-2.14) | 1.82 (1.04-3.18)† | C Braun-Farlhander et al NEJM 2002; 347: 869-77 ### Home endotoxin exposure in children Endotoxin Load in Mattress (units/m2) C Braun-Farlhander et al NEJM 2002; 347: 869-77 # Endotoxin exposure is a risk factor for asthma 831 housing units 2456 subjects evaluated by questionaire PS Thorne et al AJRCCM 2005; 172: 1371-77 # Caractéristiques de l'habitat et risque d'asthme (UK) LRC, Living room carpet; LR, living room; MAT, mattress; BR, bedroom; RSP, respirable suspended particles; NO_2 , nitrogen dioxide; HCHO, formaldehyde. **TABLE III.** Conditional logistic regression analysis of IPEADAM study key parameters | Indoor factor | Odds ratio (95% CI) | <i>P</i> value | |------------------------------|---------------------|----------------| | Endotoxin (LRC) | 1.88 (1.11-3.18) | .018* | | Self-reported absence | 0.36 (0.14-0.91) | .030* | | of dampness in home | | | | Single-parent family | 3.89 (1.25-12.1) | .019* | | Redecoration in LR | 3.15 (1.36-7.33) | .008* | | Der p 1 (MAT) vs first quart | ile | | | Second quartile | 1.00 (0.36-2.80) | 1.000 | | Third quartile | 1.89 (0.73-4.89) | .190 | | Fourth quartile | 0.98 (0.37-2.57) | .970 | | Self-reported dampness in | 2.72 (0.50-14.8) | .250 | | kitchen and bathroom | | | | Time in residence | 1.01 (0.77-1.34) | .930 | | No. of children in household | | | | 2 vs 1 | 1.16 (0.54-2.48) | .710 | | 3 or more vs 1 | 1.24 (0.59-2.60) | .570 | | Bedroom sharing | 0.65 (0.34-1.25) | .2 | | Presence of smokers | 1.09 (0.61-1.94) | .77 | | Furred pet ownership | 1.22 (0.70-2.11) | .48 | | Gas cooking | 0.69 (0.24-1.95) | .480 | | SolPM (LR) | 1.18 (0.62-2.25) | .620 | | SolPM (BR) | 1.64 (0.85-3.19) | .140 | | RSP (LR) | 1.18 (0.80-1.74) | .400 | | NO ₂ (LR) | 0.85 (0.51-1.44) | .550 | | NO ₂ (BR) | 0.92 (0.49-1.71) | .790 | | HCHO (LR) | | | | Second tertile vs | 0.82 (0.33-2.05) | .670 | | first tertile | | | | Third tertile vs | 1.22 (0.49-3.07) | .670 | | first tertile | | | | HCHO (BR) | | | | Second tertile vs | 1.26 (0.47-3.40) | .640 | | first tertile | | | | Third tertile vs | 0.99 (0.39-2.52) | .980 | | first tertile | | | | Benzene (BR) | 0.59 (0.26-1.31) | .190 | G Tavernier et al JACI 2006; 117:656 # Comparaison de la concentration en endotoxine dans la poussière chez l'asthmatique et le sujet normal FIG 1. Comparison of the 95% CI of the levels of endotoxin (in endotoxin units per milligram of dust) measured in the living room dust of matched asthmatic and nonasthmatic children. # Relationship between house dust endotoxin content and allergic asthma n = 69 SPT + (HDM) Rhinitis/asthma # Relationship between house dust endotoxin content and allergic asthma O Michel et al Am J Respir Crit Care Med 1996;154;1641-6 # Endotoxin, atopy and the risk of severe asthme Association between endotoxin, atopy, and the risk to be kept at home more than 3 times / year for a chest illness Controls = non asthmatic children Cases = asthmatics | | Models with bedroom
endotoxin ^a | | | | |------------|---|------|---------|--| | | β | s.e. | P-value | | | Controls | | | | | | Atopic | -0.11 | 1.33 | 0.94 | | | Non-atopic | -0.06 | 0.54 | 0.92 | | | Cases | | | | | | Atopic | 1.05 | 0.36 | < 0.01 | | | Non-atopic | 80.0 | 0.30 | 0.80 | | # International comparisons of concentration of endotoxin in home dust. Relationship with the clinical risks | Study location | Dust sampling
location | n | Endotoxin
(EU/mg) | Associations with endotoxin | |--|-------------------------------------|-----|----------------------|---| | Rural New Zealand
Wickens et al, 2002 ³⁷ | Living room dust
from farm homes | 94 | 7.4 GM | Endotoxin↓ on farms ↑Exposure to poultry ↑endotoxin | | | Living room dust
from nonfarms | 188 | 11.6 GM | No difference with pet No association with allergic disease | | Saxony-Anhalt, Germany | Living room floor | 405 | 22.7 (1-1200) | ↑Endotoxin ↓sensitization allergens | | Gehring et al, 2001 ²⁴
Bischof et al, 2002 ³⁰ | | | GM (max-min) | Association strengthened with increasing
degree of sensitization | | Rural European Community | Bedding from | 319 | 37.8 (14.4-88.9) | ↑Endotoxin ↓hay fever | | Braun-Fahrlander et al, 2002 ⁴ | farm homes | | GM (5%-95%) | ↑Endotoxin ↓atopic asthma | | | Bedding from | 493 | 22.8 (8.2-62.9) | ↑Endotoxin ↑nonatopic wheeze | | | nonfarm homes | | GM (5%-95%) | , | | US National Survey | Bedroom floor | 588 | 35.3 (5.0-260) | ↑Endotoxin ↑asthma symptoms | | Thorne et al, 2005 ²⁹ | | | GM (5%-95%) | ↑Endotoxin ↑wheezing | | Greater Boston area | Bedroom floor | 323 | 63 (2-761) | ↑Endotoxin ↑wheezing, 1st year life | | Park et al, 2001 ³²
Phipatanakul et al, 2004 ²⁵ | | | GM (max-min) | ↑Endotoxin ↓eczema, 1st year life | | Northern Manhattan, | Bedroom floor | 301 | 75.9 (1.2-3388) | ↑Endotoxin ↑wheezing, 2nd year life | | South Bronx, NYC† | | | GM (max-min) | ↑Endotoxin ↓eczema, 1st year life | | Metropolitan Denver | Multiple locations | 86 | 178.2 GM | ↓Endotoxin for allergen sensitized | | Gereda et al, 2001 ³⁸ | | | | Pets in home ↑endotoxin | | Gereda et al, 2000 ³ | | | | Central air-conditioning ↓endotoxin | #### Association between endotoxin and atopy – rural environment Table 1. Association between endotoxin and atopy - studies conducted in a rural environment | Author, year, country, acronym | Design, numbers, | Setting | Definition of exposure; units | Outcome
measures | Finding | Endotoxin protective
no effect or a risk
for atopy | e,
Comment | |--|---|--|--|---------------------------|--|--|---| | Braun-Fahrlander [43],
2002, Austria, Germany,
Switzerland, ALEX | Cross-sectional
survey, N=814,
6-13 years | Rural, farming
and non-farming | Dust from child's
mattress; EU/mg
and EU/m ² | Atopy (sIgE) | Endotoxin levels
were inversely
related to atopic
sensitization, OR
0.76 (0.58–0.98) | Protective | Also protective for hayfever but
high levels were associated with
an increase in non-atopic wheeze.
In the multivariate analysis,
exposure to farming in 1st year of
life and endotoxin were
independent protective factors | | Ege [44], 2007,
Schram-Bijkerk [46],
2006, Europe,
PARSIFAL | Cross-sectional
survey, N=8263,
5-13 years | Children of farmers
and Rudolf
Steiner schools
and controls | Dust from child's
mattress; EU/mg
and EU/m ² ,
N = 440 with
endotoxin | Atopy (sIgE),
(N=2086) | Endotoxin was
inversely related to
atopic
sensitization, OR
0.38 | Protective | No effect of endotoxin on asthma or
current wheeze. Endotoxin effects
were independent of farming
exposures | | Wickens [47], 2005,
New Zealand | Cross-sectional,
N = 293, 7-10 years | Rural, farming and
non-farming | Dust from living
room floor, EU/g
and EU/m ² | Atopy (spt) | No association
with atopy | No effect | Increased prevalence of allergic
disease on farms; endotoxin
levels were lower on farms | | Perkins [41], 2006, UK | Cross-sectional,
N=4767,
School-age
children | Rural, farming
and non-farming | Dust from living
room floor, EU/mg
(N = 879) | Atopy (spt)
(N=879) | No association
with a topy, OR 0.94
(0.59–1.49) | No effect | Unpasteurized milk was associated
with less atopy, irrespective of
farming status | | Eduard [48], 2004,
Norway | Nested study of
symptomatic
farmers and controls,
N=2253, mean age
46 years | Farmers | Personal sampling
of endotoxin
exposure during
farming tasks
(N = 1614) | Atopy (sIgE) | No association with
atopy, OR 0.82
(0.58-1.2) | No effect | Higher endotoxin exposure was
associated with non-atopic
asthma and inversely associated
with atopic asthma | | Portengen [49], 2005,
The Netherlands | Cross-sectional,
adults, <i>N</i> =162 | Pig farmers | Personal exposure;
EU/m ³ | Atopy (sIgE) | Strong inverse
association
between airborne
endotoxin and
atopy, OR 0.03
(0-0.3) | Protective | Higher endotoxin was associated
with an increase in airway
hyperresponsiveness | #### Association between endotoxin and atopy – urban environment Table 2. Association between endotoxin and atopy - studies conducted in an urban environment | Author, year,
country, acronym | Numbers, design, age | Definition of exposure; units | Outcome
measures | Finding | Endotoxin protective
no effect or a risk for
atopy | | |--|--|--|---------------------|---|--|---| | Gereda [50],
2000, USA | | Domestic exposure (1 sample
from living room floor, kitche
floor, sofa, bedroom floor and
cot mattress); EU/mL | Atopy (spt) | Endotoxin levels were lower
in the homes of children with
allergies than those without | Protective | Only 10 children were atopic | | Bolte [51], 2003,
Germany, LISA | N = 2000, population-
based birth cohort,
age 2 years | Dust from mothers mattress at age 3 months; EU/g | Atopy (sIgE) | No association with atopy when
analysed in quartiles of
exposure, e.g. OR 0.85 (0.54-1.35) | No effect | Increased repeated wheeze at
higher exposures | | Douwes [52], 2006,
the Netherlands,
PIAMA | N=696 (287 with IgE),
intervention arm of
PIAMA, high-risk
children, age 1 and
4 years | Dust from infants mattress and
living room floor at age
3 months; EU/m ² | Atopy (slgE) | Levels in living room floor were
not associated with atopy, OR~1 | No effect | Levels in mattress were low and not
associated with any outcome. High
levels in living room floor were
protective for wheeze | | Lau [53], 2005,
Germany, MAS90 | N = 153, age 10 years | Dust from child's mattress
age 10 years; EU/mg | Atopy (sIgE) | No association with atopy | No effect | This results is mentioned only in
the discussion and is not the focus
of the paper | | Bottcher [54], 2003,
Estonia and Sweden | N= 108 from Estonia,
N= 111 from Sweden,
age 2 years | Dust from infants mattress
and a carpet in first year
of life; EU/mg | Atopy (spt) | High endotoxin was protective
in Sweden, OR 0.48 (0.35–0.9),
no effect in Estonia | Protective/no effect | Endotoxin levels were generally
higher in Estonia where prevalence
of allengy is low compared with
Sweden where prevalence is high | | Gehring [55], 2002,
Germany, INGA | N = 444 (nested atopy
case-control study),
age 5-10 years | Dust from living room floor;
EU/m ² | Atopy (sIgE) | Higher endotoxin was
protective, OR 0.8 (0.67-0.97) | Protective | No effect seen on asthma, hayfever
or eczema | | Gehring [59], 2007,
Europe, Airallerg
(combining GINI,
LISA, PIAMA, Bamse | Nested case control for
atopy within each
cohort, age 2–4 years | Dust from child's mattress and
living room floor at age
3 months; EU/m ² and EU/g
(exposure was measured 1–4
years after sensitization was
measured) | Atopy (slgE) | Higher endotoxin was
protective when all
populations were combined | Protective | Increasing mattress dust was also
protective; this remained the
only significant factor after
mutual adjustment | | Nicolaou [56],
2006, Cyprus | Asthma case control,
N = 128,
age 15-16 years | Dust from child's mattress;
EU/m ² and EU/g | Atopy (spt) | Higher endotoxin was associated
with an increase in risk of atopy
on skin test, OR 1.6 (1-2.4) | Risk | | | El-Sharif [57],
2006, Palestine | N = 109, nested
case-control study
within ISAAC,
age 6-12 years | Dust from child's mattress
and living room floor; EU/g | Atopy (spt) | Endotoxin concentrations were
higher in the living room floor
amongst non-atopic controls,
OR 0.02 (0.002–0.3) | Protective | | | Gehring [30],
2004, Germany | N=350, nested
case-control study
within ECRHS,
age 25-50 years | Dust from living room floor;
EU/m ² and EU/g | Atopy (slgE) | Higher endotoxin was protective
against more severe allergy,
OR 0.72 (0.56–0.92) | Protective | Adults rather than children
indicating that current exposure
as well as early life exposure
may be important | ### Individual responsiveness to LPS JN Kline et al AJRCCM 2000;160:297 ### Individual responsiveness to LPS O Michel et al JACI 2003, 112: 923-9 ### Individual responsiveness to LPS #### Bi-modal distribution of the LPS responsiveness ### Genetic variants in the CD14 gene and at nSPT the mean) by CD14/-159 genotypes in skin test-positive white children at age 11 yr | CD14/-159
Genotypes | п | Mean Number of
Positive Skin Tests | |------------------------|----|---| | CC | 44 | 2.77 (2.24–3.31) | | CT | 82 | 2.74
(2.37–3.11) | | TT | 37 | $ \begin{array}{c} 1.78 \\ (1.38-2.18) \end{array} $ $ P = 0.0063 $ | M Baldini, F Martinez. AJRCMB 1999;20:976–983. ### CD14 polymorphisms | | pollens allergy | | total | |-----------------|-----------------|----|------------| | | yes | no | | | CD14-159CC | 17 | 19 | 36 | | CD14 - 159CT/TT | 16 | 66 | 82 | | total | 33 | 85 | 118 | | | | | Chi = 8.21 | | | | | p = 0.004 | #### Association between CD14 genotype and allergy Table 3. Summary of studies on relationship between CD14 genotype and allergic outcomes | Study | Population | Outcome measure | Association | Risk allele | Comment | |----------------|---|---|---|-------------|---| | Baldini [68] | 481 children from 4 ethnic groups
in Tucson Children's respiratory
study | Atopy | No association (data not shown) | None | TT children with allergies are 'less
allergic' and have higher sCD14 | | | | Total IgE in children with
positive skin tests | Lower in TT group, TT 81 (52–128) vs.
CC 168 (107–264), P=0.02 | С | | | | | Number of positive skin tests
in atopic children | Fewer in TT group, TT 1.78 (1.4–2.2) vs.
CC 2.77 (2.2–3.3), P=0.006 | С | | | Sengler [75] | German children form MAS90
study, N = 558 | Asthma, rhinitis, eczema,
polysensitization, IgE | No association, e.g. number of positive skin
tests in atopic children TT 2.93 vs. CC 2.44 | None | | | Heinzmann [73] | Asthma case-control study,
children, N = 352 | Asthma | No association with CD14 genotype, e.g. T
allele carried by 46% of controls and
48% of asthmatics | None | Control were not tested for asthma | | Leung [79] | Chinese children asthma case
control, N = 350 | Total IgE in atopic children | Higher in CC genotype, TT 2.58 vs. CC 2.82
(log scale), P=0.02 | С | | | Kabesch [74] | German children form ISAAC
study N = 2048 | Total IgE, number of positive skin
tests, asthma, rhinitis, eczema | No association, e.g. asthma present in
11% of CC and 11% TT | None | Higher sCD14 in TT group | | 0'Donnel1[71] | Cohort of Australian children,
N = 305, followed from age 8
years to age 25 years | Atopy | Associated with CC genotype in childhood
OR 2.0 (1.1-3.9), P=0.04 | С | CC associated with atopy and AHR in
childhood, with much of the effect
lost by adulthood | | | | AHR | Associated with CC genotype at age 8 years,
with trend at other time-points OR 2.6
(2.1–5.6) P=0.02 | С | | | Wang [80] | Taiwanese children with asthma, $N=190$ | High IgE in children with asthma | T allele associated with high IgE, OR 1.56
(1.03–2.36) P=0.03 | Т | In haplotype analysis effect was only
seen in those with a particular
haplotype containing a microsatellite
marker | | Woo [81] | Asthma and food allergy case
control, N = 175 | Non-atopic asthma, food allergy | Higher frequency of Tallele relative to controls,
OR 2.7 (0.9–8.0) for non-atopic asthma | , Т | Lower rate of T allele in controls than in
other published studies (39%) | | Litonjua [78] | 0 | Eczema | More common in carriers of T, OR 2.3 (1.4-3.8) | | | | C [ee] | | Total IgE | Lower in CC | T | | | Gao [82] | British N= 300 and Japanese
N= 200 asthma case control | Asthma, atopy | No association | None | | | 01 [1 | | Total IgE in British | Higher in CC, TT 21.9 vs. CC 79.4, P=0.02 | С | | | Ober [77] | population | Positive skin tests | More common in T allele carriers, P = 0.009 | T | | | Koppelman [72] | Dutch adults with asthma and
their spouses, N = 317 | Total IgE in subjects with
positive skin tests | Higher in CC group, CC 163 (105–253) vs.
TT 106 (67–168) | С | | | | | Number of positive
skin tests | Higher in CC group | С | | | | | Hayfever | More common in CC group, OR 1.8 (1.1-3.0) | С | | | | | MD asthma | No association | None | | | | Case control Czech
adults with asthma | Asthma, rhinitis, total IgE, | | | | | Buckova [83] | or rhinitis, N=882 | lung function Sensitization to moulds | No association
Associated with C allele | None
C | | | | Australia, adults, asthma case | | | | Did meta-analysis and | | Kedda [76] | control, N = 1011
Case-control study of adults with | Asthma, atopy
Atopic asthma, | No association
C allele present in 48% of cases and | None | found no association | | Sharma [84] | atopic asthma from India, $N=41$ | 4 higher IgE | 38% of controls | c | | | Lachheb [85] | Case-control study of children wit
asthma, Tunisia, N=434 | h
Asthma | TT less likely to have | С | OR for asthma in C allele carriers
was 1.6 | | Lactineb [85] | astrima, runisia, N=434 | Asuma | asthma, OR 1.6 (1.2-2.2) | C | was 1.6 | #### Interaction between endotoxin and CD14 genotype Table 4. Summary of studies reporting interaction between measured endotoxin exposure and CD14 genotype | Author, year, acronym, country | Design, age,
numbers | Ethnic group | Definition of exposure; units | Relationship
between CD14
genotype and
outcome | Relationship
between Endotoxin
and outcome | Interaction between
CD14 genotype and
endotoxin | |--|---|--|---|---|--|--| | Simpson [70],
2006, MAAS, UK | Population based
birth cohort
study, age 5
years, N = 442 | Mixed
European
ancestry only | Living room floor,
GM 2856 EU/m ²
(16.1 EU/mg) | AS: NA
A: NA
E: NA | AS: increasing
endotoxin
associated with
decreased AS
A: NA
E: NA | AS: In CC only higher endotoxin associated with decreased risk of AS A: In CC only higher endotoxin associated with increased risk of non- atopic wheeze E: In CC only higher endotoxin associated with decreased risk of eczema | | Zambelli-weiner
[86], 2005,
BAGS, Barbados | Asthmatic probands and their families, N = 443 (adults and children) | Of African
descent/
European
admixture | Living room composite
endotoxin load –
dichotomous
(75th percentile),
GM 23 144 EU/m ² | AS: NA
A: TT
protective
E: NR | AS: NA
A: NA
E: NR | AS: NR A: more common in TT with high endotoxin (i.e. at high exposures C allele is protective) E: NR | | Williams [88],
2006, WHEALS
mothers, USA | Mothers of population based birth cohort (young adults > 21 years), N = 517 | All races
analysed
together | Dust from the home at
age 1 month (child),
GM 16.2 EU/mg | AS: TT had lower
total IgE
A: NR
E: NR | AS: NA
A: NR
E: NR | AS: In CC only, higher
Endotoxin associated with
lower total IgE
A: NR
E: NR | | Williams [89],
2008, WHEALS,
USA | Population based
birth cohort
study, age 1 year
N=90 | All races
analysed
together,
stratified | Dust from the home at
age 6 month (child),
GM 18.2 EU/mg | AS:
A: NR
E: NR | AS:
A: NR
E: NR | AS: In CC only, higher
Endotoxin associated with
lower total IgE
A: NR
E: NR | | Eder [87], 2005,
ALEX, Germany
and Austria | Children living on
farms and local
controls, N = 624 | NR | Dust from child's
mattress, GM in
tertiles (2nd tertile
12 495–30 046 EU/m ²) | AS: NA
A: NR
E: NR | AS: high exposure
protective
A: NR
E: NR | AS: C allele protective in the
highest endotoxin tertile
only
A: NR
E: NR | ## Association du taux d'IgE avec l'exposition aux endotoxine selon les polymorphismes du CD14 **Dust endotoxin (EU/mg)** William LK et al JACI 2006; 118: 851 # Association du taux d'IgE avec l'exposition aux endotoxine selon les polymorphismes du CD14 ## CD14 promotor polymorphisms and inhaled endotoxin modulates the sCD14 # Association of CD14 haplotypes with LPS-induced systemic inlammation ## Innate Immunity in Heart, Lung and Blood Disease Programs for Genomic Applications Name toll-like receptor 4 isoform D Source PGA InnateImmunity Chromosome chr9 (+) (chr9:113920245-113930888) Accession NM_138557 SNPs 44 The most frequent are: <u>- 896</u>, -1196, -1607, -2026, -137 Ref: Immunity in Heart, Lung, and Blood Diseases. Innate Immunity PGA, NHLBI Program for Genomic Applications, URL: www.innateimmunity.net/IIPGASNPs/TLR4/index htlm ### TIr-4 polymorphism and the LPS responsivenes: The LPS response was lower in subjects +896 AG of Tlr-4 gene Michel, T LeVan, D Stern, M Dentener, J Thorn, D Gnat, L Beijer, P Cochaux, PG Holt, FD Martinez, R Rylander. J Allergy Clin Immunol 2003, 112: 923-9 ### LPS receptor gene : summary | LPS GENE STUDY SUMMARY | | | | | | | | | |------------------------|--------------|-------------------|-------------|--------------------|--|--|--|--| | | TLR4-1607 TT | TLR4-896AA | TLR4-2026AA | CD14-159 CC | | | | | | | Chi-2 p | Chi-2 p | Chi-2 p | Chi-2 p | | | | | | Sexe | 0,55 ns | 0,61 ns | 5,41 ns | 1,48 ns | | | | | | SPT | 6,36 0,042 | 0,09 ns | 2,04 ns | 6,05 0,014 | | | | | | RAST g1, t3 | 5,91 0,0521 | 0,18 ns | 0,97 ns | 8,77 0,0031 | | | | | | CRP resp (>10) | 2,47 ns | 7,29 0,007 | 1,37 ns | 2,04 ns | | | | | | WBC resp (>4000) | 3,07 ns | 4,25 0,039 | 0,45 ns | 0,31 ns | | | | | ## Relationship between endotoxin exposure and the prevalence of asthma, in regard with TLR4 polymorphism M Werner et al JACI 2003;112:323 ### Conclusions The effects of endotoxin exposure on allergic diseases are influenced by: - 1. The timing of exposure - 2. The pre-existence of a disease - 3. The polymorphisms of the endotoxin receptor